
Math 10B with Professor Stankova
Worksheet, Discussion #3; Thursday, 1/25/2018
GSI name: Roy Zhao

Pigeonhole Principle

Examples

1. Show that in a class of 30 students in 10B (consisting of freshmen, sophomores, juniors,
and seniors), there exists at least 10 freshmen, 8 sophomores, 8 juniors, or 7 seniors.

Solution: Since 30 > (10− 1) + (8− 1) + (8− 1) + (7− 1) = 29, by the generalized
pigeonhole principle, one of these thing must be true.

2. Let a1, . . . , a21 be a rearrangement of the numbers 1 through 21. Then show that

(a1 − 1)(a2 − 2) · · · (a21 − 21)

is always even.

Solution: There are 11 odds and 10 evens. For the 11 odd numbers. For the 11
odd numbers, by pigeonhole, there must exist at least an odd number n such that
an is odd (there are only 10 even numbers), and hence (n − an) is even. Therefore,
the complete product is odd.

Problems

3. True FALSE The Pigeonhole Principle tells us that if we have n + 1 pigeons and n
holes, since n + 1 > n, each box will have at least one pigeon.

Solution: One hole could have all n + 1 pigeons.

4. True FALSE The Pigeonhole Principle tells us that with n pigeons and k holes each
hole can have at most dn/ke pigeons.
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Solution: There exists one box with at least that many, but it could contain more.

5. Show that in a 8×8 grid, it is impossible to place 9 rooks so that they all don’t threaten
each other.

Solution: By Pigeonhole, there exists one row with at least two rooks, so they must
threaten each other.

6. The population of the US is 300 million. Every person has written somewhere between
0 and 10 million lines of code. What’s the maximum number of people that we can say
must have written the same number of lines of code?

Solution: There are 10 · 106 + 1 different number of lines of code you can write. So,
there exists a number of line of codes with at least d300 · 106/(106 + 1)e = 30 people.

7. Three people are running for student government. There are 202 people who vote. What
is the minimum number of votes needed for someone to win the election?

Solution: By pigeonhole, there exists a person who has gotten at least d202/3e = 68
votes. So, someone could win with a 67− 67− 68 split.

8. There are 38 different time periods during which classes at a university can be scheduled.
If there are 677 different classes, how many different rooms will be needed?

Solution: There exists a time period will have at least d677/38e = 18 classes during
it. So 18 different rooms will be needed.

9. Show that in a group of 20 people and friendship is mutual, show that there exist two
people who have the same number of friends?

Solution: Each person can have 0 to 19 friends. But if someone has 0 friends, then
no one can have 19 friends and similarly you cannot have 19 friends and no friends.
So, there are only 19 options for the number of friends and 20 people, so we can use
pigeonhole.
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10. Assuming that everything in the US (300 million people) identifies with male or female
and has less than 10 children, show that there exist at least 3 people that have the same
gender, number of children, three letter initials, and birthday.

Solution: We take

d 300 · 106

2 · 10 · 263 · 366
e = 3

and apply pigeonhole.

Permutations and Combinations

Examples

11. How many ways are there for 8 men and 5 women to stand in a line so that no two
women stand next to each other?

Solution: Once you place the men, there are 9 spots for the women. We can choose
one for each woman to stand in and since the order matters, the final number is
P (8, 8) · P (9, 5).

12. How many anagrams of MISSISSIPPI exist?

Solution: There are a total of 11 letters with 1 M, 2 P, 4 S, 4 I. The final answer is

11!

2!4!4!
.

13. How many anagrams of BEAD exist so that the vowels appear all next to each other?

Solution: We can group them together at first to get (4− 1)! = 6 different ways to
anagram. But then inside the block of vowels, we can arrange two ways so 2 ·6 = 12.

Problems

14. TRUE False P (n, k) = C(n, k) · k!

15. True FALSE P (n, k) = P (n, n− k).
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16. How many anagrams of ROYZHAO exist so that the consonants appear next to each
other (Y is a vowel)?

Solution: 4 vowels and 3 consonants. Block the consonants together to get a total
of 5 blocks with two repeating (2 Os) so 5!/2! different ways to arrange. Within the
block, there are 3! ways to arrange giving a total of

5!/2! · 3! = 360.

17. How many four digit numbers exist such that their digits are in strictly increasing order?

Solution: With any selection of 4 digits from 1 through 9, we can make such a four
digit number and every four digit number is made that way. So there are a total of
C(9, 4) different ways.

18. How many ways are there to choose a delegation out of 10 males and 10 females if the
delegation is made up of 2 males and 3 females?

Solution:
(
10
2

)
ways to choose the males and

(
10
3

)
ways to choose the females giving

a total of
(
10
2

)(
10
3

)
total ways.

19. At a consultant mixer with 42 people, everyone shakes everyone else’s hand exactly once.
How many handshakes occur?

Solution: There exists one handshake between any two people, so one for each pair.
There are C(42, 2) different ways to choose pairs.

20. How many rectangle sub-boards with at least two rows and columns exist on a 8 × 8
chessboard?

Solution: In order to draw a rectangle, we need to specify the left and right columns,
as well as the top and bottom rows. So, we just need to choose two different rows

which can happen
(
8
2

)2
different ways.
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21. 3 different friends are splitting 9 different donuts amongst themselves equally so each
person gets 3. How many ways are there to do this?

Solution: There are C(9, 3) different ways to choose donuts for the first person, then
C(6, 3) for the next, and C(3, 3) for the last. So a total of C(9, 3) · C(6, 3) · C(3, 3)
different ways. Another way to get this is to note that this is the same number of
anagrams of AAABBBCCC where the for example in the anagram ABCABCABC,
donut numbers 1,4, 7 are given to A. There are a total of 9!/(3!)3 different ways to
do this, which is the same answer.

22. (Challenge) There are 9 points on a circle and lines connect all pairs of points. At how
many places inside the circle do these lines intersect?

Solution: Each intersection inside is determined by four points on the outside. Each
selection of 4 points gives a unique intersection point. Thus, there are a total of
C(9, 4) different intersection points.


